Improving Reclamation on Oil and Gas Well Pads in the Rocky Mountain West

IPAMS 2008 ROCKY MOUNTAIN ENERGY TECHNOLOGY CONFERENCE September 5, 2008

Ed Redente, Ph.D. MWH Americas, Inc. 3665 JFK Parkway, Suite 206 Fort Collins, CO 80525

- Reseeding of millions of acres following the dust bowl of the 1930s
- Improvements of millions of acres of arid and semiarid rangelands in the 1960s—1980s following more than a half a century of rangeland exploitation

Reclamation Science—The State of the Art

- Conversion of millions of acres of marginal farm land to perennial grasslands under the USDA Conservation Reserve Program beginning in 1985
- Reclamation of tens of thousands of acres of mined lands, especially following SMCRA and rigorous state rules and regulations governing mine land reclamation

Reclamation Science—The State of the Art

- Relevance to Oil and Gas Reclamation
 - The knowledge that has been accumulated from decades of reclamation work in the western U.S. has direct application to the O&G industry
 - No need to reinvent the wheel for O&G reclamation

- Relevance to Oil and Gas Reclamation (continued)
 - Although some of the knowledge is being applied to O&G, much of it is not being used
 - The effectiveness of achieving reclamation success needs to increase if O&G development is going to be allowed to continue

Physical Challenges

- Extremes in Texture
 - Infiltration
 - Water holding capacity
 - Cation exchange capacity

- Soil Compaction
 - Too much compaction results in the loss of macropores, runoff increases, potential for erosion increases, and root growth is restricted.

Physical Challenges (continued)

- Rock Fragments
 - Reduction in root volume
 - Decline in TWH capacity
 - Reduction in total soil nutrients
 - Elevated surface temperature (higher heat capacity than soil)
 - Poor seed soil contact in seedbed

Physical Challenges (continued)

- Erosion
 - Major limiting factor to restoration success
 - Water (sheet and rill/gully)
 - Wind

Physical Challenges (continued)

- Precipitation
 - Arid and semi-arid conditions are a limiting factor for plant establishment
 - In below average precipitation years, rainfall may result in successful germination, but overall precipitation may not be adequate to support long-term establishment

Chemical Challenges

- Soil pH
 - Extremes in pH are problematic for plant growth (<5.0 or >9.0)
- Soil salinity (EC > 4 mmhos/cm)
 - Effects plant's ability to take up water
 - Effect is more prevalent during germination and early seedling growth

Chemical Challenges (continued)

- Soil sodicity
 - Deterioration of soil structure (defloculation or dispersion of soil particles) results in restricted water movement into soil

Biological Challenges

- Invasive Species
 - Competition from highly competition invasive plants (noxious and non-noxious weeds)
- Grazing Animals
 - Over utilization by wildlife and domestic livestock

Other Challenges to Reclamation Success

Improper Reclamation Techniques

- Inadequate seedbed preparation
- Lack of "safe sites" for seed germination & establishment
- Seed distribution not uniform
- Planting seed too deep
- Seeding rates too low
- Seeding wrong time of the year

Other Challenges to Reclamation Success

Improper Species Selection and Seed Mixture Composition

- Species or cultivars not adapted to site conditions
- Use of species that have seed dormancy issues
- Use of species that are difficult to establish or very slow growing
- Formulating seed mixtures that over emphasize species that are difficult to establish or are highly aggressive

Overcoming Challenges for Reclamation Success

- Eliminate soil compaction by ripping or scarifying
- If rock fragments are high, then considering adding amendments to increase WHC
- Control erosion with mulch or reduce slope angle and length
- Cover saline soils or use only salt tolerant species
- Cover sodic soils, use only sodium tolerant species, or treat with gypsum
- Control invasive species

Overcoming Challenges for Reclamation Success

- Use of fencing to exclude large herbivores
- Rough seedbed is superior to a smooth seedbed
- Implement quality controls during seeding
- Seed prior to the period of greatest precipitation or period of most reliable precipitation (this varies by region)
- Select species and cultivars that are adapted to site conditions (soil type, elevation, precipitation).
- If seed supplies are coming from native collections, only use seed to that has been collected from environments similar to where planting will occur

Overcoming Challenges for Reclamation Success

- Minimize the use of slow growing species
- Minimize the use of species with seed dormancy issues
- Formulate seed mixtures based on the ecological characteristics of the species
- Implement monitoring programs to measure reclamation success

