Monitoring and Protecting Groundwater During Oil & Gas Development

**Overview of Colorado Aquifer Systems** 

November 26, 2012 Christopher J. Sanchez, P.G.



## **Colorado Aquifer Systems**

- Topics
  - Locations and occurrence of:
    - Aquifer systems
    - Oil & gas basins
  - Potential contamination events
    - What types of events are we monitoring for?
  - Travel times
  - Considerations with respect to rulemaking



#### Colorado Oil & Gas Basins



Source: COGCC GIS database



## **Colorado Aquifer Systems**

- Interaction of aquifers and oil and gas drilling activities
  - Focus is on sedimentary aquifer systems
  - Sedimentary bedrock and alluvial aquifers typically overlay O&G formations
  - Other aquifer types exist, but typically do not interact with O&G formations



#### Schematic Geologic Cross-Section



Modified from Colorado Division of Water Resources, 2001





Source: Ground Water Atlas of Colorado

#### Schematic Cross-Section of Aquifer Types in Colorado



Modified after Harlan and others, 1989



Source: Ground Water Atlas of Colorado

#### Simple model, sometimes but not always true

#### Example of Gas Well to Water Well Isolation









Alluvial Deposits in Colorado

Source: Ground Water Atlas of Colorado

BISHOP-BROGDEN ASSOCIATES, INC.

water consultants





Overlay of Alluvial Deposits and Oil & Gas Basins



Northeastern CO, Alluvial Deposits and Oil and Gas Basins





Northwestern CO, Alluvial Deposits and Oil and Gas Basins





Sedimentary Bedrock Aquifer Systems in Colorado



Source: Ground Water Atlas of Colorado



Overlay of Bedrock Aquifers and Oil and Gas Basins



#### **Denver Basin Example**



Schematic geologic cross section of Denver Basin – Oil & Gas zones located in and below Pierre Shale



Source: Ground Water Atlas of Colorado



#### Dakota-Cheyenne Aquifer

Source: Ground Water Atlas of Colorado





Overlay of Dakota-Cheyenne Aquifer and Oil and Gas Basins



| Era      | System     | Series              | Strati-<br>graphic<br>Unit | Unit<br>Thickness<br>(feet) | Physical<br>Characteristics                                                                         | Ну                      | drogeologic<br>Unit             | Saturated<br>Thickness<br>(feet) | Hydrologic<br>Characteristics                                                                                          |
|----------|------------|---------------------|----------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Mesozoic | Cretaceous | Upper<br>Cretaceous | Pierre Shale               | 0–4,000+                    | Black to dark-gray shale                                                                            | Confining layer         |                                 |                                  | Not known to yield water to wells                                                                                      |
|          |            |                     | Niobrara<br>Formation      | 200+                        | Upper unit is yellowish<br>chalk, lower unit is chalky<br>limestone and marl                        |                         | Fort Hayes<br>Limestone         | 50–60                            | Yields water to stock<br>wells and springs north<br>of Arkansas River                                                  |
|          |            |                     | Carlile Shale              | 200+                        | Upper unit is sandy<br>shale; middle unit is<br>black, fissile shale; lower<br>unit is chalky shale | Codell Sandstone        |                                 | 20+                              | Yields water to a few stock wells                                                                                      |
|          |            |                     | Greenhorn<br>Formation     | 65                          | Upper unit is chalky<br>shale and thin limestone;<br>lower unit is hard, crys-<br>talline limestone | С                       | Confining layer                 |                                  | Yields no water to wells                                                                                               |
|          |            |                     | Graneros<br>Shale          | 85–100                      | Gray to black shale                                                                                 | Confining layer         |                                 |                                  | Yields no water to wells                                                                                               |
|          |            | Lower<br>Cretaceous | Dakota<br>Sandstone        | 150–235                     | Fine-grained, thin-bedded to massive sandstone                                                      | Dakota-Cheyenne aquifer | Dakota<br>Sandstone             | 150+                             | Yields sufficient for<br>domestic and stock use;<br>in some areas yields<br>enough for municipal and<br>industrial use |
|          |            |                     | Purgatoire<br>Formation    | 60–350                      | Upper unit is gray to<br>black clayey shale;<br>lower unit is massive,<br>fine-grained sandstone    |                         | Cheyenne<br>Sandstone<br>Member | 30–200                           | Yields sufficient for<br>industrial, municipal, and<br>irrigation use                                                  |
|          | Jurassic   |                     | Morrison<br>Formation      | 20–240                      | Varicolored marl                                                                                    | C                       | Confining layer                 |                                  | Minimal yield to wells from sandstone lenses                                                                           |

Hydrogeologic Units in Eastern CO. All of these units are also developed for Oil & Gas In some locations

Source: Ground Water Atlas of Colorado

Modified from Romero, 1994



## **Example Well Depths**

- Wattenberg area (DJ O&G Basin, Denver Basin aquifer system)
  - Alluvial water supply wells:
  - LFH water supply wells:
  - O&G wells (Niobrara):
  - Dakota Formation (not aquifer at this location):

80 ft 890 ft 8000 ft

8400 ft



#### Considerations re. Well Depths

- Locations other than eastern Colorado
  - Water supply wells vary in depth
  - O&G wells have variable depths
  - Water supply wells may be constructed in formations not typically considered to be aquifers
  - Geology and relationship between aquifers and O&G formations may be complex



#### Contamination Occurrences -During O&G Drilling and Fracking

- Cement seals in boreholes prevent interaction
  Cement plugs may fail if not properly installed
- Fractures may create conduits between aquifers and O&G wells (fracked wells)
- Surface spills
- Unforeseen events
  - There are many unknowns
  - Impossible to fully understand subsurface fluid movement



## Fluid flow mechanisms

- Fluids will not migrate from oil and gas formations to aquifers unless a conduit has been created
  - New fracture
  - Well borehole
- Surface spills can contaminate aquifers
  - Spills
  - Leaky surface pits
  - Contaminants can migrate through surface streams, through aquifers, or by overland flow



# **Aquifer Travel Times**

- Variable based on site-specific conditions
- Alluvial aquifers
  - 0.05 to 10 feet per day (18 to 3,650 ft per year)
- Bedrock aquifers
  - 0.05 to 0.5 feet per day (18 to 182 ft per year)
- Groundwater moves very slowly
  - Monitoring may need to continue for long periods to identify contaminants
- Well pumping can impact travel times



#### Considerations Regarding Sampling points

- Need to define what the Rules are seeking to protect
  - Existing wells?
  - All aquifers?
  - Surface water?
- Use of existing wells only will protect just that, existing wells only
- Springs provide opportunity for groundwater discharge sample
- New wells provide opportunity to sample aquifers in which no local wells are constructed at strategic aquifer locations



#### Water Quality Samplings Parameters

- Parameters to be analyzed need to cover fluids introduced in borehole
- Hydrocarbon profile will help to identify O&G that may migrate from a new well
- Sampling of gas from wells is recommended if any evidence of gas in wells is present



#### **Considerations for Rulemaking**

- Contamination may occur to:
  - Shallow alluvial aquifers
  - Deeper bedrock aquifers
  - Surface water
- A single monitoring approach may not be appropriate for all situations
- Monitoring of existing wells may not be protective of all aquifer systems
- It will be cost prohibitive to construct new monitoring wells in some situations



#### Considerations for Rulemaking – cont.

- Contaminants may move very slowly
- Monitoring for extended time periods may be required in order to detect contaminants
- Horizontal location of O&G wells and orientation of fractures should be considered when developing monitoring strategy
- Draft rules require two samples. This may not adequately cover existing aquifers and stream systems if more than two aquifer systems and / or surface water is present.



#### Considerations for Rulemaking – cont.

- Monitoring program is protective for property / well owners as well as O&G operators
- Statewide consistent approach helps to streamline process and establish expectations
- Need flexibility to adjust requirements based on site-specific conditions
  - Single approach will not match all situations



#### **Questions / Discussion**

Chris Sanchez Bishop-Brogden Associates, Inc. <u>csanchez@bbawater.com</u> <u>www.bbawater.com</u> (303) 806-8952

