

Social Studies TEM ustainability

Protecting Drinking Water Resources

Well Integrity Is the Key!

Cover photo courtesy of Charlene E. Shaw, U.S. Environmental Protection Agenc

Ultrasonic Image of the Cement Sheath

Natural Gas Infrastructure

- Obtain well-integrity data from industry
- Ultrasonic imagery
- Quantitative risk assessment of "black swan" events
- Quantitative assessment of fracture migration (modelled)

Water Quantity

- Alterations of groundwater flow
- Portfolios of future water supply
- Comparative assessments of regulations
- Risk assessment
- Hari Rajaram, Reagan Waskom, Kevin Doran, Mark Williams

Experience w/ Contaminant Transport

Combine these cutting edge computational tools with readily accessible open-source software such as NETL's FRACGEN/

Discrete-Fracture Network and Matrix Transport Models for Nevada Test Site scale applications, with ~ 1 Billion computational nodes

Preferential high-flow channels and dead-end fractures (right figure zooms in to show particle traces in red)

Sustainable Water Use and Reuse

- Past and present industry partners:
 - Anadarko Petroleum Corporation
 - Chevron
 - Marathon Oil Company
 - Petro-Canada Resource (USA), Inc.
 - Pioneer Natural Resources
 - Pinnacle Gas Resources
 - Triangle Petroleum Corporation
 - Bear Creek Services
 - CGRS Inc.
- <u>http://aqwatec.mines.edu/</u> <u>produced water/</u> for more information

Risk of Casing Faliure (Reliability/Statistical analysis based on well logging records from Encana and COGCC)

Risk of Induced "runaway" Fractures connecting failed casing to a drinking water aquifer
(Monte-Carlo simulations using Gopher, FracPro to generate induced fracture networks, accounting for heterogeneities in rock properties and in-situ stresses)

Risk of contamination of drinking water wells following gas/ fracking chemical discharge into a groundwater aquifer (Monte-Carlo simulations using Groundwater flow and transport codes – porous media and/or fractured rock, accounting for heterogeneous permeability fields and/or stochastic fracture network structure, and well locations)

Cumulative Risk of Groundwater Contamination

Social-Ecological System Modeling

Social-Ecological System Model

- Optimal outcomes?
 - less risk ⇔ less value; more value ⇔ more risk
 - best event for a risk-value combination

Air Quality

